

# Gut microbiota in recurrent Clostridium difficile-associated diarrhea

### Corbella M.<sup>1,2</sup>, Merla C.<sup>1</sup>, Mariani B.<sup>1\*</sup>, Piralla A.<sup>1</sup>, Marone P.<sup>1</sup>, Cambieri P.<sup>1</sup>

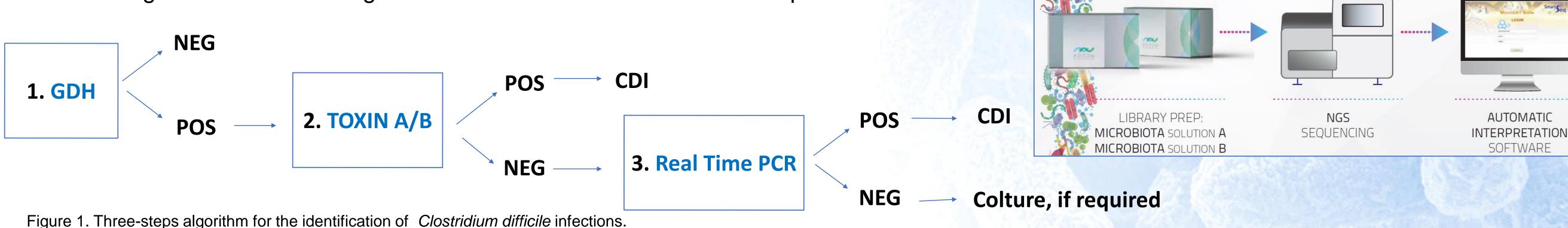
<sup>1</sup> UOC Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy

<sup>2</sup> Servizio Epidemiologia Clinica e Biometria, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy



## Background and Aim

Most cases of *Clostridium difficile* infection (CDI) respond initially, recurrence (rCDI) after the discontinuation treatment can occur (1). Old age, use of antibiotics, gastric acid suppression, and infection with a hypervirulent strain are currently regarded as the major risk factors for rCDI (2). The composition of gut microbiota is affected by antibiotic treatments especially with metronizadole and vancomycin, promoting CDI (2). In adults, healthy microbiota is composed mostly by Bacteroidetes and Firmicutes usually, whereas Actinobacteria, Proteobacteria and Verrucomicrobia are generally minor constituents (3).


This study aimed to compare the gut microbiota of:

- patients with rCDI and patients with a single CDI episode at the first episode (T<sub>0</sub>);
- patients with rCDI during the first and second episode.

## Materials and Methods

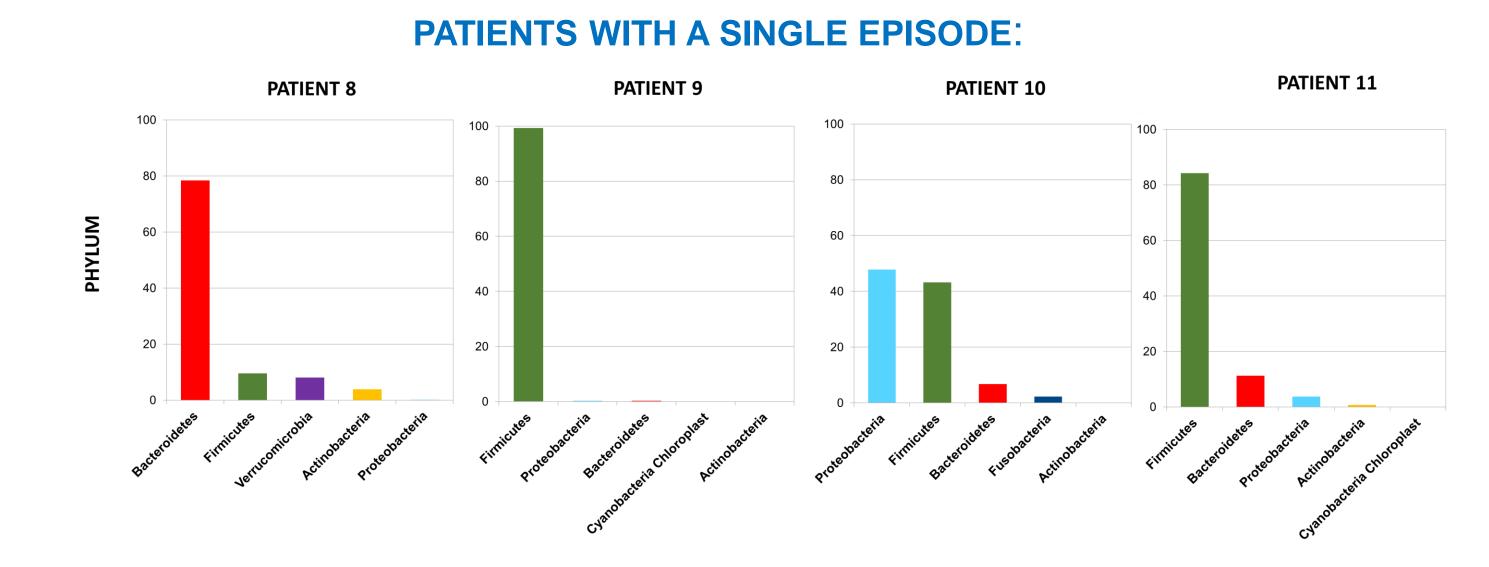
The faeces of 11 patients, 4 with a single CDI episode and 7 with a rCDI, were collected. In all samples the presence of *Clostridium difficile* and its toxins was searched through a three-step algorithm (Figure 1). The V1-V3 regions of 16S rRNA gene were amplified, sequenced and analysed by

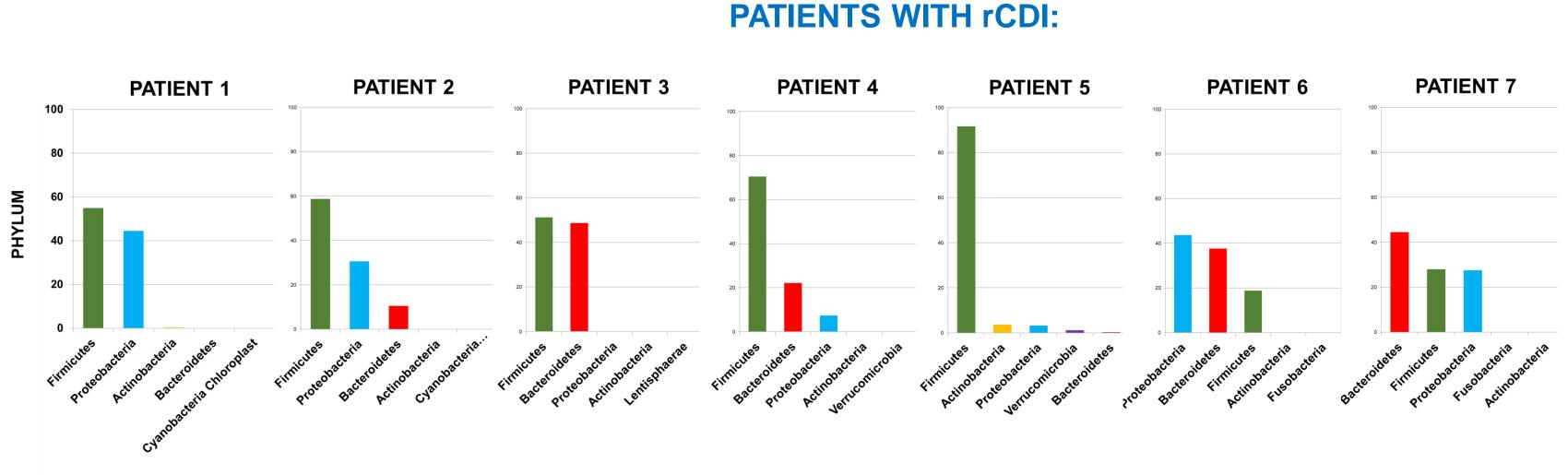
Arrow Diagnostics service using Microbiota Solution A kit and SmartSeq software.



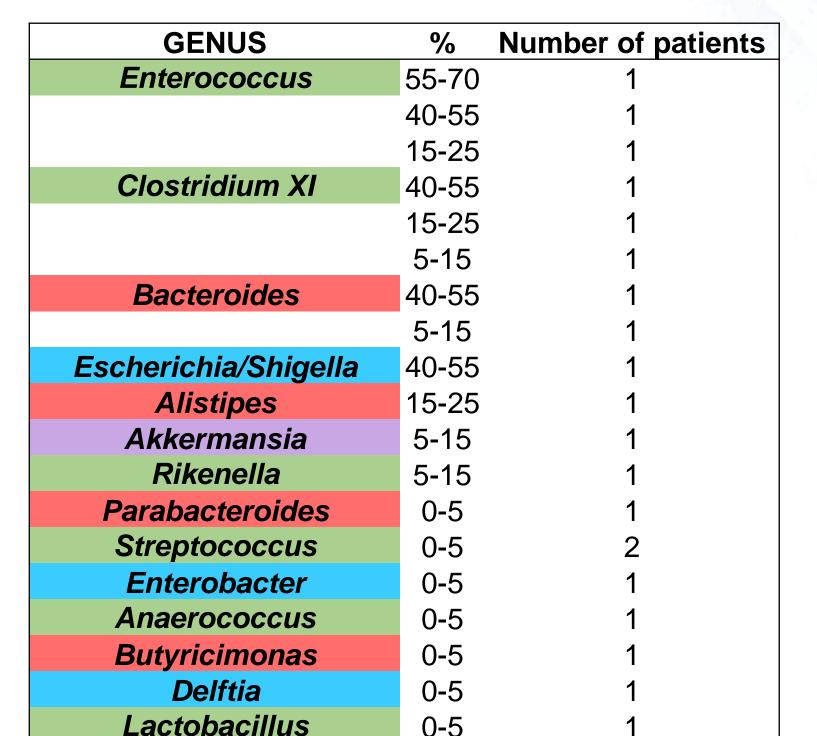
## Population characteristic

| PATIENT | EPISODE | AGE | DAYS FROM<br>THE<br>ADMISSION | 1ST AND | HOSPITAL<br>WARD                     | GDH<br>(BIOHIT<br>Health<br>Care) | Tox<br>(Meridian<br>Bioscienc<br>e Inc.) | •   | TYPE<br>OF<br>STOOL | REASON FOR THE<br>HOSPITALIZATION | THERAPY<br>BEFORE<br>DIARRHEA | THERAPY<br>AFTER<br>DIARRHEA |
|---------|---------|-----|-------------------------------|---------|--------------------------------------|-----------------------------------|------------------------------------------|-----|---------------------|-----------------------------------|-------------------------------|------------------------------|
| 1       | I       | 54  | 1                             | 45      | General<br>Medicine                  | POS                               | Negative                                 | POS | FSL                 | Fever > 38 °C                     | MEM, PIP/TAZ,<br>VAN          | MTZ, VAN                     |
|         | П       | 54  | 48                            |         | General<br>Medicine                  | POS                               | POS                                      | -   | FSL                 | Fever > 38°C                      | PIP/TAZ                       | PIP/TAZ, VAN                 |
| 2       | 1       | 64  | 3                             | 44      | General<br>Medicine                  | POS                               | POS                                      | -   | FSL                 | Sepsis                            | MEM, PIP/TAZ                  | MEM, VAN                     |
|         | II      | 64  | 8                             |         | Infectious<br>Diseases               | POS                               | POS                                      | -   | FSL                 | Asthenia, anorexia                | MEM, PIP/TAZ,<br>VAN          | MI, VAN                      |
| 3       | I       | 80  | 14                            | 66      | General<br>Medicine                  | POS                               | POS                                      | -   | FL                  | Respiratory failure               | -                             | VAN, Fidaxomicin             |
|         | II      | 80  | NA                            |         | Lab Analysis                         | POS                               | POS                                      | -   | FSL                 |                                   | Not available                 | Not available                |
| 4       | I       | 75  | 0                             | 57      | Emergency<br>Medicine                | POS                               | POS                                      | -   | FSL                 | Diarrhea                          | LEV                           | AZM, PIP/TAZ,<br>VAN         |
|         | 11      | 75  | 0                             |         | Emergency<br>Medicine                | POS                               | POS                                      | -   | Fecal<br>Swab       |                                   |                               |                              |
| 5       | I       | 71  | 59                            | 39      | Anesthesiology<br>and<br>Reanimation | POS                               | POS                                      | -   | FSL                 | Heart failure                     | CN, CL, MEM                   | VAN, FLU                     |
|         | II      | 71  | 96                            |         | Anesthesiology<br>and<br>Reanimation | POS                               | POS                                      | -   | FSL                 | Heart failure                     |                               |                              |
| 6       | I       | 83  | NA                            | 48      | Lab Analysis                         | POS                               | POS                                      | -   | FSW                 |                                   | Not available                 | Not available                |
|         | Ш       | 83  | NA                            |         | Lab Analysis                         | POS                               | POS                                      | -   | FSW                 |                                   | Not available                 | Not available                |
| 7       | I       | 82  | 1                             | 29      | General<br>Medicine                  | POS                               | POS                                      | -   | FSL                 | Fever                             | PIP/TAZ                       | VAN                          |
|         | II      | 82  | 2                             |         | Infectious<br>Diseases               | POS                               | POS                                      | -   | SL                  | Fever                             | PIP/TAZ                       | MEM, SXT, VAN                |
| 8       | I       | 56  | 14                            | NA      | Urology                              | POS                               | POS                                      | -   | LIQ                 | Sepsis                            |                               | VAN                          |
| 9       | I       | 76  | 30                            | NA      | Infectious<br>Diseases               | POS                               | Negative                                 | POS | SS                  | Cirrhosis                         | PIP/TAZ                       | CIP, CRO, TEC,<br>VAN        |
| 10      | I       | 52  | 0                             | NA      | Obstetrics –<br>Gynaecology          | POS                               | POS                                      | -   | FSW                 | Fever >38°C, diarrhea             | LEV                           | MTZ, VAN                     |
| 11      | ı       | 93  | 0                             | NA      | General                              | POS                               | Negative                                 | POS | SL                  | Thighbone fracture                | PIP/TAZ                       | VAN                          |

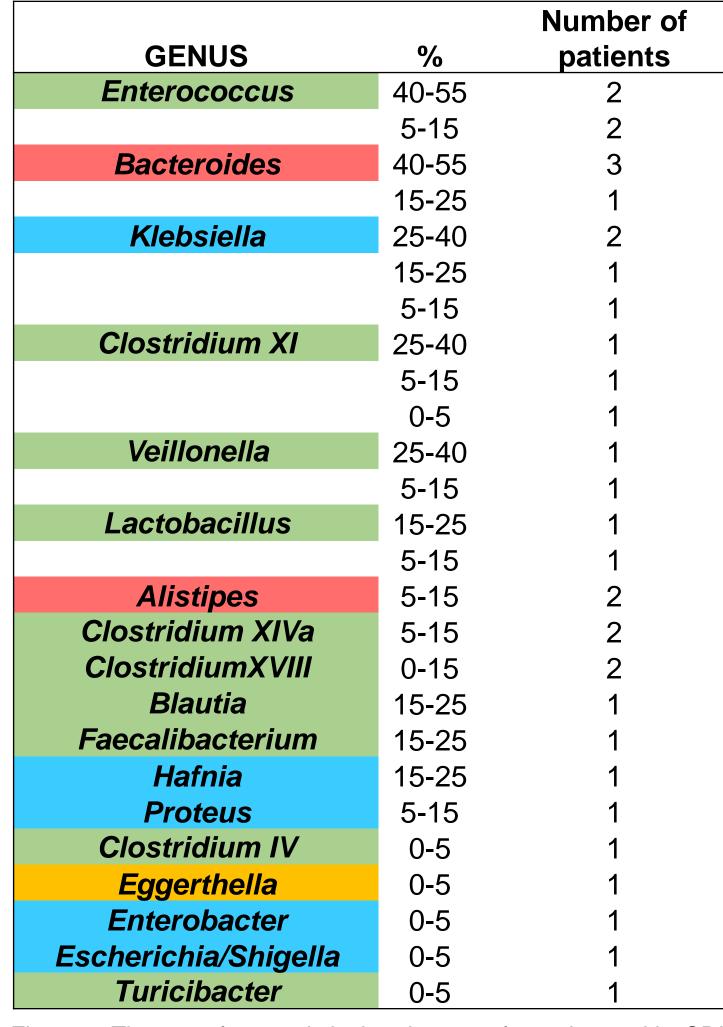

AZM=Azithromycin, CIP=Ciprofloxacin, CL= Colystin, CN=Gentamycin, CRO= Ceftriaxone, FLU= Fluconazol LEV= Levofloxacin, MEM=Meropenem, MI=Minocycline, MTZ= Metronidazole, PIP/TAZ=Piperacillin/tazobactam, SXT= Trimethoprim/sulfamethoxazole, TEC=Teicoplanin, VAN= Vancomycin


8/11 were male, 10 were hospitalized.

The median time between the first episode and the rCDI was 44 days (range 29-66).


6/7 patients with rCDI were treated with vancomycin for 10 days after the first episode.

## Microbiota 1° episode of CDI






3/4 (75%) patients with a single episode and 5/7 (71.4%) with rCDI showed scarce biodiversity with a high prevalence of Bacteroidetes and Firmicutes especially belonging to Bacteroidales and Clostridiales orders up to 90% at T<sub>0</sub>. High level of Proteobacteria (>20%) are observed in 4/7 patients with rCDI and in 1/4 patient with a single episode. Dysbiosis is commonly associated with the presence of Proteobacteria that usually increase in gut diseases (celiac disease). No correlation was found in the microbiota composition between the CDI and rCDI groups (p>0.05).







#### Figure 3. The most frequently isolated genera for patients with rCDI.

# Microbiota 1° episode vs. 2° episode in patients with rCDI

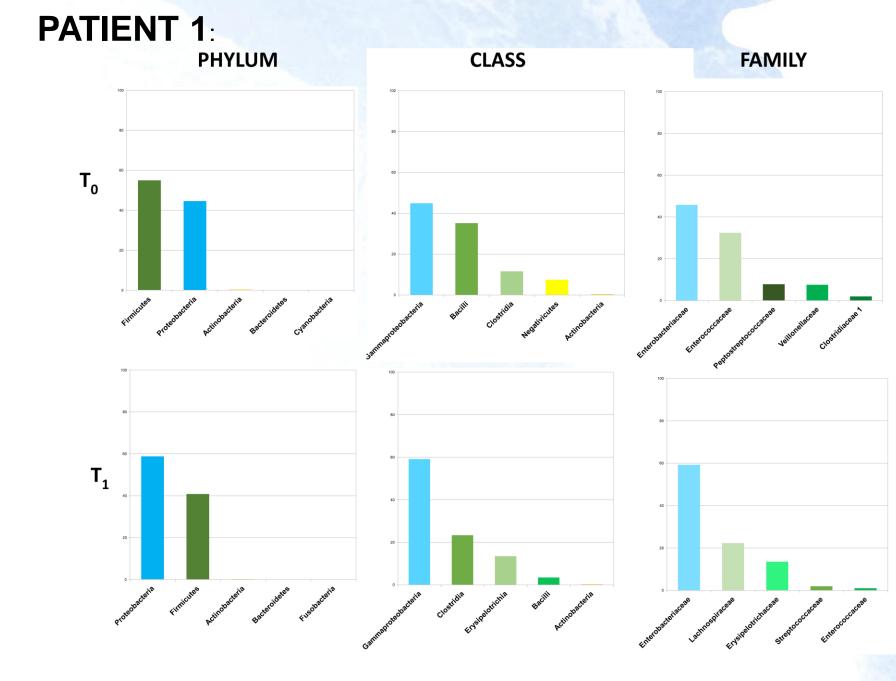



Figure 4. The prevalence of the 5 most frequently isolated phyla, classes and families for patient 1.

3/7(43%) patients showed an increase of Proteobacteria and Clostridium XIVa at  $T_1$ , and a decrease of Firmicutes in particular Clostridium XI. In 1 of these patients also Bacteroidetes decreased.

In 1/7 patient the microbiota remained stable throughout the two episodes.

In 3/7 (43%) patients Firmicutes increased up to the double and Proteobacteria decreased. In 2 of these patients (57.1%) Bacteroidetes decreased, while in only 1/7 patient remained stable.

## Conclusion

Our patients with CDI and rCDI presented low level of microbial diversity. In particular the reduction in the genera Faecalibacterium, Roseburia and Eubacterium decreased short chain fatty acids that are necessary to regulate the gut tropism. Moreover, the dysbiosis can contribute to the loss of colonization resistance against C. difficile.

# References

(1) Seekatz et al., 2016 (2) Song et al., 2018 (3) Lozupone et al., 2012

## Acknoledgement

We thank Dr. Simona Panelli who provided insight and expertise.